Piperine enhances carbohydrate/fat metabolism in skeletal muscle during acute exercise in mice

نویسندگان

  • Jisu Kim
  • Kang-Pa Lee
  • Dae-Won Lee
  • Kiwon Lim
چکیده

BACKGROUND Exercise promotes energy metabolism (e.g., metabolism of glucose and lipids) in skeletal muscles; however, reactive oxygen species are also generated during exercise. Various spices have been reported to have beneficial effects in sports medicine. Here, we investigated the effects of piperine, an active compound in black pepper, to determine its effects on metabolism during acute endurance exercise. METHODS ICR mice (n = 18) were divided into three groups: nonexercise (CON), exercise (EX), and exercise with piperine (5 mg/kg) treatment (EP). Mice were subjected to enforced exercise on a treadmill at a speed of 22 m/min for 1 h. To evaluate the inflammatory responses following exercise, fluorescence-activated cell sorting analysis was performed to monitor changes in CD4+ cells within the peripheral blood mononuclear cells (PBMCs) of mice. The expression levels of metabolic pathway components and redox-related factors were evaluated in the soleus muscle by reverse transcription polymerase chain reaction and western blotting. RESULTS There were no changes in the differentiation of immune cells in PBMCs in both the EX and EP groups compared with that in the CON group. Mice in the EX group exhibited a significant increase in the expression of metabolic pathway components and redox signal-related components compared with mice in the CON group. Moreover, mice in the EP group showed greater metabolic (GLUT4, MCT1, FAT/CD36, CPT1, CS) changes than mice in the EX group, and changes in the expression of redox signal components were lower in the EP group than those in the EX group. CONCLUSION Our findings demonstrate that piperine promoted beneficial metabolism during exercise by regulating carbohydrate/fat metabolism and redox signals. Therefore, piperine may be a candidate supplement for improvement of exercise ability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of skeletal muscle fat oxidation during exercise in humans.

Fat and carbohydrate are the major energy substrates during aerobic exercise in well-fed humans. The regulation of fat metabolism during exercise has not been as thoroughly studied as carbohydrate metabolism, especially in human skeletal muscle. Traditionally, it was believed that the regulation of skeletal muscle fat metabolism was mainly at the level of the delivery of free fatty acids to the...

متن کامل

New Insights into the Interaction of Carbohydrate and Fat Metabolism During Exercise

Fat and carbohydrate are important fuels for aerobic exercise and there can be reciprocal shifts in the proportions of carbohydrate and fat that are oxidized. The interaction between carbohydrate and fatty acid oxidation is dependent on the intracellular and extracellular metabolic environments. The availability of substrate, both from inside and outside of the muscle, and exercise intensity an...

متن کامل

Metabolic aspects of low carbohydrate diets and exercise

Following a low carbohydrate diet, there is a shift towards more fat and less carbohydrate oxidation to provide energy to skeletal muscle, both at rest and during exercise. This review summarizes recent work on human skeletal muscle carbohydrate and fat metabolic adaptations to a low carbohydrate diet, focusing mainly on pyruvate dehydrogenase and pyruvate dehydrogenase kinase, and how these ch...

متن کامل

Adipose triacylglycerol lipase deletion alters whole body energy metabolism and impairs exercise performance in mice.

Adipose triacylglycerol lipase (ATGL) and hormone-sensitive lipase (HSL) are essential for efficient lipolysis in adipose tissue and skeletal muscle. Herein, we utilized whole body knockout mice to address the importance of ATGL and HSL for metabolic function and exercise performance. ATGL deletion severely disrupts whole-body substrate partitioning at rest; reducing plasma free fatty acid (FFA...

متن کامل

Conjugated linoleic acid supplementation enhances insulin sensitivity and peroxisome proliferator-activated receptor gamma and glucose transporter type 4 protein expression in the skeletal muscles of rats during endurance exercise

Objective(s):This study examined whether conjugated linoleic acid (CLA) supplementation affects insulin sensitivity and peroxisome proliferator-activated receptor gamma (PPAR-γ) and glucose transporter type 4 (GLUT-4) protein expressions in the skeletal muscles of rats during endurance exercise. Materials and Methods:Sprague-Dawley male rats were randomly divided into HS (high-fat diet (HFD) s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2017